SUGGESTED SOLUTIONS TO HOMEWORK 2

Exercise 1 (6.2.14). Let I be an interval and let f : I — R be differentiable on I. Show
that if the derivative f’ is never 0 on I, then either f'(z) > 0 for all z € I or f'(z) < 0 for
all x € I.

Proof. Since f’ is never 0 on I, let us further assume there exist ¢ < b € I such that
f'(a) < 0 < f'(b), then by Darboux’s Theorem, there exists ¢ € (a,b) such that f'(c) = 0,
which is a contradiction. Therefore either f'(x) > 0 for all z € I or f'(z) < 0 for all
x el U

Exercise 2 (6.2.16). Let f : (0,00] — R be differentiable on (0,00) and assume that
f'(x) = basz — oo.

(a) Show that for any h > 0, we have lim

T—00

(b) Show that if f(x) — a as x — oo, then b = 0.
(c) Show that lim @ =b.

T—00

Proof. (a) Given € > 0, there exists A > 0 such that for z > A, we have

[f'(z) = b <e.

Therefore for any h > 0, let > A, then by Mean Value Theorem, there exists xj, € (x,z+h)

such that ,
PRI ) ) bl < e

(b) Assume that b # 0 and let € < |b‘ , then there exists A; > 0 such that for x > A;, we
have

fa+h)—f(@) _
=0

1) b < 2,
which implies
TRL
r@l> g,

for x > A;. Since lim f(z) = a, then there exist Ay > 0 such that for y >z > Ay, we have

[f(x) = fy)l <e

Let x > max{A;, Ay} and y = z + 1, By Mean Value Theorem, there exists ¢ € (z,x + 1)
such that
|f/(x0)’ <6
which is a contradiction. Therefore b = 0.
(c) Given € > 0, let A’ > A and x > max{A, f(f/ £ (xo '}, then by Mean Value Theorem,
there exists zy € (A', z) such that

f(@) = f(A) = f(wo)(z — A),
f( )

therefore
f(z)

T

e e N e
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which implies lim % =, O
T—00
Exercise 3 (6.3.1). Suppose that f and g are continuous on [a, b], differentiable on (a,b),
that ¢ € [a,b] and g(z) # 0 for x € [a,b], x # ¢. Let A := lim f and B := lim g, and if
r—c r—c

B =0, and lim % exists in R, show that we must have A = 0.
r—rc

Proof. Interchanging the order of limit and product,

lim f(z) = lim g(z) - lim @) =0,

T—C T—cC T—C g(m)
which implies A = 0. O

Exercise 4 (6.3.2). In addition to the preceding exercise, let g(x) > 0 for x € [a,b], z # c.

If A >0 and B =0, prove that we must have lim % =o0. If A <0 and B =0, prove that
Tr—rC
fz)

we must have lim = —00.
z—ec 9(T)

Proof. 1t suffices to prove the first case. For arbitrary C' > 0, let € < then there exists

d > 0 such that for x € (¢ —9,c+ 9), we have
[f(z) — Al <€ g(z)] <e,

C’+1’

therefore

which implies that lim # = . O

r—C

0 for z irrational, and let
= (0. Explain why Theorem

Exercise 5 (6.3.4). Let f(z) := z? for x rational, let f(x) :
g(x) :=sinz for € R. Use Theorem 6.3.1 to show that hm K

6.3.3 cannot be used.

f(x)
g(a)

Proof. Let us first show that f’ exists at x = 0. For arbitrary € > 0, let A < ¢, for |h| < A,
if h is rational, we have

f(h)
—| < |h] <
E2) < 1)
if h is irrational, we have
f(h)
—| =0.
£
Therefore f(0) = 0. By Theorem 6.3.1, we have lim ch Ea‘") 0.
z—0
It should be noted that Theorem 6.3.3 cannot be used. Because f’ does not exists for
x # 0. Indeed, f is not continuous except x = 0. O

Exercise 6 (6.3.13). Try to use L'Hospital’s Rule to find the limit of 22£ as z — (I)—.
Then evaluate directly by changing to sines and cosines.

Proof. On the one hand, by L’Hospital’s Rule,

i tan x . sec? .
lim = lim — = lim —
z—(%)— secx z—(3)—-secxrtanx  z—(3)-sSInx

=1.
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On the other hand,

. tanx . .
lim = lim sinz=1.

e—(5)— secx  a—(Z)-




