
SUGGESTED SOLUTIONS TO HOMEWORK 2

Exercise 1 (6.2.14). Let I be an interval and let f : I → R be differentiable on I. Show
that if the derivative f ′ is never 0 on I, then either f ′(x) > 0 for all x ∈ I or f ′(x) < 0 for
all x ∈ I.

Proof. Since f ′ is never 0 on I, let us further assume there exist a < b ∈ I such that
f ′(a) < 0 < f ′(b), then by Darboux’s Theorem, there exists c ∈ (a, b) such that f ′(c) = 0,
which is a contradiction. Therefore either f ′(x) > 0 for all x ∈ I or f ′(x) < 0 for all
x ∈ I. □

Exercise 2 (6.2.16). Let f : (0,∞] → R be differentiable on (0,∞) and assume that
f ′(x) → b as x → ∞.

(a) Show that for any h > 0, we have lim
x→∞

f(x+h)−f(x)
h

= b.

(b) Show that if f(x) → a as x → ∞, then b = 0.

(c) Show that lim
x→∞

f(x)
x

= b.

Proof. (a) Given ϵ > 0, there exists A > 0 such that for x > A, we have

|f ′(x)− b| < ϵ.

Therefore for any h > 0, let x > A, then by Mean Value Theorem, there exists xh ∈ (x, x+h)
such that

|f(x+ h)− f(x)

h
− b| = |f ′(xh)− b| < ϵ,

(b) Assume that b ̸= 0 and let ϵ < |b|
2
, then there exists A1 > 0 such that for x > A1, we

have

|f ′(x)− b| < |b|
2
,

which implies

|f ′(x)| > |b|
2
,

for x > A1. Since lim
x→∞

f(x) = a, then there exist A2 > 0 such that for y > x > A2, we have

|f(x)− f(y)| < ϵ.

Let x > max{A1, A2} and y = x + 1, By Mean Value Theorem, there exists x0 ∈ (x, x + 1)
such that

|f ′(x0)| < ϵ,

which is a contradiction. Therefore b = 0.
(c) Given ϵ > 0, let A′ > A and x > max{A, f(A

′)
ϵ

, f
′(x0)A′

ϵ
}, then by Mean Value Theorem,

there exists x0 ∈ (A′, x) such that

f(x)− f(A′) = f ′(x0)(x− A′),

therefore

|f(x)
x

− b| ≤ |f(A
′)

x
|+ |f ′(x0)− b|+ |f

′(x0)A
′

x
| < 3ϵ,
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which implies lim
x→∞

f(x)
x

= b. □

Exercise 3 (6.3.1). Suppose that f and g are continuous on [a, b], differentiable on (a, b),
that c ∈ [a, b] and g(x) ̸= 0 for x ∈ [a, b], x ̸= c. Let A := lim

x→c
f and B := lim

x→c
g, and if

B = 0, and lim
x→c

f(x)
g(x)

exists in R, show that we must have A = 0.

Proof. Interchanging the order of limit and product,

lim
x→c

f(x) = lim
x→c

g(x) · lim
x→c

f(x)

g(x)
= 0,

which implies A = 0. □

Exercise 4 (6.3.2). In addition to the preceding exercise, let g(x) > 0 for x ∈ [a, b], x ̸= c.

If A > 0 and B = 0, prove that we must have lim
x→c

f(x)
g(x)

= ∞. If A < 0 and B = 0, prove that

we must have lim
x→c

f(x)
g(x)

= −∞.

Proof. It suffices to prove the first case. For arbitrary C > 0, let ϵ < A
C+1

, then there exists
δ > 0 such that for x ∈ (c− δ, c+ δ), we have

|f(x)− A| < ϵ, |g(x)| < ϵ,

therefore

|f(x)
g(x)

| > A− ϵ

ϵ
> C,

which implies that lim
x→c

f(x)
g(x)

= ∞. □

Exercise 5 (6.3.4). Let f(x) := x2 for x rational, let f(x) := 0 for x irrational, and let

g(x) := sin x for x ∈ R. Use Theorem 6.3.1 to show that lim
x→0

f(x)
g(x)

= 0. Explain why Theorem

6.3.3 cannot be used.

Proof. Let us first show that f ′ exists at x = 0. For arbitrary ϵ > 0, let A < ϵ, for |h| < A,
if h is rational, we have

|f(h)
h

| < |h| < ϵ,

if h is irrational, we have

|f(h)
h

| = 0.

Therefore f ′(0) = 0. By Theorem 6.3.1, we have lim
x→0

f(x)
g(x)

= 0.

It should be noted that Theorem 6.3.3 cannot be used. Because f ′ does not exists for
x ̸= 0. Indeed, f is not continuous except x = 0. □

Exercise 6 (6.3.13). Try to use L’Hospital’s Rule to find the limit of tanx
secx

as x → (π
2
)−.

Then evaluate directly by changing to sines and cosines.

Proof. On the one hand, by L’Hospital’s Rule,

lim
x→(π

2
)−

tanx

secx
= lim

x→(π
2
)−

sec2 x

secx tanx
= lim

x→(π
2
)−

1

sinx
= 1.
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On the other hand,

lim
x→(π

2
)−

tanx

secx
= lim

x→(π
2
)−
sinx = 1.

□


